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1 Introduction

The Finite Element Method is currently used to simulate and analyze a wide range
of problems in applied sciences and engineering. There are several 3D applications
where hexahedral elements are preferred. Hence, the general interest in unstructured
hexahedral discretizations has increased. Since an all-hexahedral mesh generation
algorithm for any arbitrary geometry is still an unreachable goal, research efforts
have been focused on algorithms that decompose the entire geometry into several
simpler volumes. In particular, during the last decade significant progress has been
made in developing fast and robust sweeping algorithms [Knu98, Knu99, Sta99,
Roc04]. Nowadays, the original sweep methods have been modified in order to mesh
more complicated geometries allowing multiple source and target geometries [Bla96,
Miy00], and multiple axis geometries [Min96].

Given an extrusion volume, the common task of all sweeping algorithms is to
identify the source surfaces, the corresponding target surfaces, and the set of sur-
faces that join them, called linking sides. The source surfaces can be meshed using
any structured or unstructured quadrilateral surface mesh generator [Bla91, Cas96,
Sar00a, Sar00b]. On the contrary, the linking sides are meshed using any standard
structured quadrilateral meshing algorithm, for instance, transfinite interpolation
[Tho99]. Then, the source surface meshes are extruded along the sweep direction
until they reach the target surfaces. Note that the target surfaces may or may not
be previously meshed.

In general, the inner nodes are placed, layer by layer, along the sweep direction.
Each layer is delimited by loops of nodes that belong to the structured meshes of the
linking-sides. Several algorithms have been developed in order to generate the inner
layer of nodes. Most of them generate the new nodes by means of a projection of
the source surface mesh onto the inner layers. That is, the inner nodes are located
using a least-squares approximation of a linear transformation (the homogeneous
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part of an affine mapping) between the boundary nodes of the source surfaces and
the boundary nodes of the inner layer [Knu98, Bla96].

From the construction point of view, two main strategies are used to compute the
position of the inner nodes. The first one computes, starting from the source surface,
the position of the new layer from the previous one in an advanced front manner
[Knu98, Min96]. The second strategy first projects the source surface mesh onto the
target surface. Then, the position of the inner layers is computed using a weighted
interpolation of the projection of the cap surface meshes [Sta99, Roc04, Bla96].

Most of the proposed algorithms to map meshes between surfaces involve an
orthogonal projection of nodes onto the target surface [Goo97]. These projections are
expensive from a computational point of view since it is necessary to solve as many
root finding problems as internal points are on the mesh of the source surface. In
order to address this shortcoming, Roca and co-workers [Roc04] presented a method
such that the projection of the source mesh onto the target surface is determined by
means of a least-squares approximation of an affine mapping. This affine mapping
is defined between the parametric representations of the loops of boundary nodes
of the cap surfaces. Once the new mesh is obtained on the parametric space of the
target surface, it is mapped up according to the target surface parameterization. It
is important to point out that projection algorithms can be used to project meshes
both in 2D (parametric space) and 3D geometries (physical space).

The projection algorithms cited above are based on a least-squares approxima-
tion of a linear transformation. To this end, several functionals are defined, see
sections 2 and 3. However, the minimization of these functionals does not always
generate an acceptable projected mesh. For several geometric configurations (for
instance, source surfaces with a planar boundary, which are extremely usual in real
applications) the minimization of one of the proposed functionals leads to a set of
normal equations with a singular system matrix. Nevertheless, these normal equa-
tions may be solved using a singular value decomposition algorithm. In this case, if
a mesh over a non-planar surface with a planar boundary is projected on an inner
layer defined by a planar set of nodes, then a planar mesh is obtained. It is pos-
sible to overcome this shortcoming minimizing an alternative functional. However,
its minimization may induce a skewness effect on the cross-section of the projected
surface mesh. Moreover, its minimization may also lead to a set of normal equations
with a singular system matrix, see section 3.

In this paper we propose a new functional that overcomes the drawbacks of
the previous formulations. Moreover, we prove that its minimization has a unique
solution. Finally, we present several examples in order to assess the robustness of
the new formulation and compare it with the previously proposed functionals.

2 Problem Statement

Let X = {xi}i=1,...,m ⊂ Rn be a set of source points, and Y = {yi}i=1,...,m ⊂ Rn

be a set of target points with m ≥ n. Our goal is to find a mapping φ : Rn → Rn

such that
yi = φ(xi), i = 1, . . . , m. (1)

We approximate φ by an affine mapping ϕ from Rn to Rn. This affine mapping is
determined by a least-squares fitting of the given data. Thus, we want to find ϕ
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such that minimizes the functional

E(ϕ) :=

m

i=1

yi − ϕ(xi) 2. (2)

The above minimization has a clear geometrical meaning: the optimal affine mapping
is such that the sum of the square of distances between the target points and the
image of the source points is minimized. We also define

cX :=
1

m

m

i=1

xi and cY :=
1

m

m

i=1

yi (3)

as the geometric centers of the sets X and Y , respectively.

Remark 1. One of the most important practical applications of the least-squares
fitting of affine mappings is the projection of a given mesh in a sweeping tool. In
these applications X is the set of nodes of the source surface boundary, and Y
consists of the loop of nodes that define a given inner layer or the boundary nodes
of the target surface discretization.

It is well known that any affine mapping ϕ from Rn to Rn can be written as

ϕ(x) = Ax + b ,

where A ∈ L(Rn) is a linear transformation (the homogeneous part), and b ∈ Rn

is the affine part. If we consider b := b + AcX , then we can write ϕ as

ϕ(x) = A(x− cX) + b. (4)

Therefore, without loss of generality, we can write the initial least-squares problem
(2) as the minimization of the functional

E(A,b) :=

m

i=1

yi −A(xi − cX)− b 2, (5)

where A ∈ L(Rn) and b ∈ Rn.

Remark 2. It is straightforward to prove that if (AE ,bE) ∈ L(Rn) × Rn is the
optimal solution of (5), then the affine part of (5) is the geometric center of Y ,
i.e. bE = cY . Therefore, using (4), the optimal solution maps the center cX to the
center cY .

3 Alternative Formulations

According to Remark 2, the solution of the minimization of E maps the center cX

to the center cY . This property induces, as Knupp does in [Knu98], the definition
of the new coordinates x = x− cX and y = y − cY . These new coordinates can be
interpreted as translating the sets of points X and Y to the origin, see figure 1(a).
Using these new coordinates we have
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F (A) :=

m

i=1

yi − cY −A(xi − cX) 2 =

m

i=1

yi −Axi 2. (6)

Therefore, we are looking for a linear mapping A such that approximately trans-
forms, in the least-squares sense, X = {xi}i=1,...,m to Y = {yi}i=1,...,m. Functional
(6) is used in [Knu98] in order to reduce the number of degrees of freedom involved
in the minimization of functional (5).

However, functional (6) has an important drawback: if the set of source points
determines a plane in 3D geometries, or a straight line in 2D applications, then the
matrix of the normal equations corresponding to the minimization of functional (6)
is singular. Note that this is a usual situation in practical CAD models, see figure
1(b). In order to formalize the analysis of functional F we introduce the following
definitions, lemmas and propositions. All of them apply to the general case of Rn.
Therefore, we will use the term hyperplanar to denote a linear variety of dimension
n − 1 (a plane for n = 3 and a straight line for n = 2). From the practical point
of view, two cases are important: n = 2 used to project sets of points between
parametric spaces [Roc04], and n = 3 used to project sets of points in the physical
space [Knu98, Roc04].

Definition 1 (Hyperplanar set). A set of points X = {xi}i=1,...,m is hyperplanar
if there exists only one hyperplane through all the points in X.

Remark 3. The definition of hyperplanar set has an interesting geometrical interpre-
tation. It states that there exist n points in X that are linearly independent as affine
points. In other words, if we take any point of X, the differences between the rest
of points of X and the selected point determine a vectorial subspace of dimension
n− 1.

Definition 2 (Unitary normal vector). Let X be a set of points. A unitary
normal vector to X is a vector nX ∈ Rn with nX = 1 such that

< nX ,xi >= c, i = 1, . . . , m, (7)

for some c ∈ R.

Definition 3 (Homogeneous hyperplane). Let X be a hyperplanar set of points.
The homogeneous hyperplane of X is the subspace of vectors

H = {v ∈ Rn| < nX ,v >= 0},
where nX ∈ Rn is a normal vector to X.

Lemma 1. If X is a hyperplanar set, then cX is such that

< nX , cX >= c,

where nX and c are introduced in Definition 2.

Proof. Since X is a hyperplanar set, equations (7) hold. Adding these m equations,
and taking into account that < ·, · > is bilinear, then

< nX ,

m

i=1

xi >= mc.

Dividing both terms of the last equation by m, and using the definition of cX , see
(3), we obtain < nX , cX >= c.
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Fig. 1. (a) Geometric representation of the translation of sets X and Y to the origin;
(b) Example of a geometry with a source surface defined by a planar boundary loop

Lemma 2. If X is a hyperplanar set, then

H = span(x1 − cX , · · · ,xm − cX).

Proof. The proof of this Lemma is straightforward from Definition 1, Remark 3,
and Lemma 1.

Proposition 1. If X is hyperplanar, then the minimization of functional F is equiv-
alent to solving n uncoupled overdetermined linear systems of rank n− 1.

Proof. The minimization of functional F is equivalent to imposing the following m
constraints

A(xi − cX) = yi, i = 1, · · · , m. (8)

Our unknowns are the coefficients of the n× n matrix A which we denote as

A =

⎛⎜⎝a1,1 . . . a1,n

...
...

an,1 . . . an,n

⎞⎟⎠ .

Defining

X :=

⎛⎜⎝x1
1 − cX

1 . . . xm
1 − cX

1

...
...

x1
n − cX

n . . . xm
n − cX

n

⎞⎟⎠ and Y :=

⎛⎜⎝y1
1 − cY

1 . . . xm
1 − cY

1

...
...

y1
n − cY

n . . . xm
n − cY

n

⎞⎟⎠ ,

we can write the m constraints (8) as
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AX = Y.

Hence, the minimization of F is equivalent to solving

XT AT = YT .

This equation is equivalent to solving the following n (m×n)-overdetermined linear
systems

XT ak = yk, k = 1, · · · , n,

where ak := (ak,j) for j = 1, · · · , n and yk = (yl
k − cY

k ), for l = 1, · · · , m. To
conclude, we have to prove that XT has rank n− 1. By Lemma 2, and taking into
account that dim H = n− 1

rankXT = dim span(x1 − cX , . . . ,xm − cX) = dim H = n− 1.

Remark 4. It is well known that solving a non full-rank overdetermined linear system
is equivalent to solving a set of normal equations with singular system matrix [Gil91,
Law74].

When X is hyperplanar, we have seen that the minimization of F amounts to
solving n uncoupled overdetermined linear systems of rank n − 1. Thus, we have
n extra degrees of freedom which allow us to find a solution of the minimization
of F such that it has cY − cX as a fixed vector. This idea, leads to the change of
coordinates x = x−cX +cY −cX and y = y−cX , see [Knu98] for details. These new
coordinates have a clear geometric interpretation: the sets of points X and Y are
translated to cY − cX , see figure 2(a). According to [Knu98], these new coordinates
suggest the definition of the following functional

G(A) :=

m

i=1

yi − cX −A(xi − cX + cY − cX) 2 =

m

i=1

y
i −Ax

i 2. (9)

Therefore, we are looking for a linear mapping A such that it approximately trans-

forms, in the least-squares sense, X = {x i}i=1,...,m to Y = {y i}i=1,...,m.
However, functional (9) also leads to normal equations with singular matrix if

the vector cY −cX lies in the hyperplane determined by the source points, see figure
2(b). Note that this situation is usual in several practical 3D applications if the inner
layers are obtained by means of a direct projection from the source surface mesh
[Roc04]. On the other hand, this is typically not the case if the position of the new
layer is computed from the previous one in an advanced front manner [Knu98].

Proposition 2. If X is hyperplanar and cY − cX ∈ H, then the minimization of
functional G is equivalent to solving n uncoupled overdetermined linear systems of
rank n− 1.

Proof. This proof only differs from the proof of Proposition 1 on the definitions of
matrices X and Y. In this case, the correspondent matrices are

X :=

⎛⎜⎝x1
1 − cX

1 + cY
1 − cX

1 . . . xm
1 − cX

1 + cY
1 − cX

1

...
...

x1
n − cX

n + cY
n − cX

n . . . xm
n − cX

n + cY
n − cX

n

⎞⎟⎠
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Fig. 2. (a) Geometric representation of the translation of sets X and Y to cY −cX ;
(b) Example of a geometry where cY − cX lies in the same plane as the source
surface and the boundary of the inner layer

and

Y :=

⎛⎜⎝y1
1 − cX

1 . . . xm
1 − cX

1

...
...

y1
n − cX

n . . . xm
n − cX

n

⎞⎟⎠ .

To conclude, we have to show that XT has rank n−1. By assumption cY −cX ∈ H,
hence

span(x1 − cX + cY − cX , . . . ,xm − cX + cY − cX) = span(x1 − cX , . . . ,xm − cX).

Finally, using this equation, Lemma 2, and taking into account that dim H = n− 1,
we obtain

rankXT = dim span(x1 − cX + cY − cX , . . . ,xm − cX + cY − cX) = dim H = n− 1.

Remark 5. It is also possible to prove that if X is hyperplanar and cY − cX /∈ H,
then the minimization of G is equivalent to solving n uncoupled overdetermined
linear systems of rank n.

Remark 6. The minimization of functional G has an additional shortcoming when
it is applied to planar sets of points, even in the case of cY − cX /∈ H. Consider
the source surface with a planar boundary and non-planar interior shown in figure
3(a). Assume that we want to project a source surface mesh onto an inner layer
(of a sweep volume) defined by a planar boundary, but non-parallel to the source
surface. Figure 3(b) shows a cross-section of the source surface, the correspondent
cross-section of the computed projection minimizing functional G, and the desired
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cy

cy cx
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Fig. 3. (a) A source surface with planar boundary and non-planar interior; (b) cross-
section view of the source surface and its computed image using the minimization
of G (grey line) and the desired solution (black line)

solution. We know that the optimum affine transformation, AG, has cY − cX as
fixed vector. Thus, we can observe that the cross-section obtained with AG (grey
line in figure 3(b)) does not preserve the shape of the original surface.

4 The New Formulation

In order to overcome the drawbacks arising from the minimization of functionals F
and G, in this work we propose the following new functional

H(A;uX ,uY ) :=

m

i=1

yi − cY −A(xi − cX) 2 + uY −AuX 2, (10)

where uX ∈ Rn, and uY ∈ Rn. It is important to point out that vectors uX and
uY in (10) can be properly selected in order to obtain several desired properties of
functional H.

Proposition 1 states that if X is hyperplanar, the minimization of F is equivalent
to solving n uncoupled overdetermined linear systems of rank n− 1. Thus, we have
n extra degrees of freedom which allow us to find a solution of the minimization of
F such that it maps uX to uY .

Using again the new coordinates introduced by Knupp in [Knu98]: x = x− cX

and y = y − cY , we can write

H(A) =

m

i=1

yi −Axi 2 + uY −AuX 2.

Therefore, we are looking for a linear mapping A such that it approximately trans-
forms, in the least-squares sense, X = {xi}i=1,...,m to Y = {yi}i=1,...,m, and uX to
uY , see figure 4.
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Fig. 4. Geometric representation of the translation of sets X and Y to the origin
and the vectors uX and uY

We will see that the minimization of H, opposite to the minimization of func-
tionals F and G, always leads to a set of normal equations with full rank when X
is hyperplanar.

Proposition 3. If X is a hyperplanar set and uX /∈ H, then the minimization of
functional H is equivalent to solving n uncoupled overdetermined linear systems of
rank n.

Proof. Similar to the proofs of the previous propositions, the minimization of H
leads to n uncoupled overdetermined linear systems. In this case we define

X :=

⎛⎜⎝x1
1 − cX

1 . . . xm
1 − cX

1 uX
1

...
...

...
x1

n − cX
n . . . xm

n − cX
n uX

n

⎞⎟⎠ and Y :=

⎛⎜⎝x1
1 − cY

1 . . . xm
1 − cY

1 uY
1

...
...

...
x1

n − cY
n . . . xm

n − cY
n uY

n

⎞⎟⎠ .

By Lemma 2 dim H = dim span(x1 − cX , . . . ,xm − cX) = n− 1. Since uX /∈ H, we
conclude that rankXT = dim span(x1 − cX , . . . ,xm − cX ,uX) = n.

Remark 7. It is also possible to prove that if X generates a linear variety of dimension
n (whole Rn) and uX = 0, then the minimization of H is equivalent to solving
n uncoupled overdetermined systems of rank n. From this result, and taking into
account Proposition 3, we can conclude that the minimization of H has one and
only one solution. Note that we do not consider sets of points X that generate
linear varieties of dimension less than n− 1. For instance, in R3 we do not consider
source surfaces which degenerate to lines or points, because it does not make sense
to sweep them in practical applications.

Remark 8. Vectors uX and uY are parameters of functional H. In our implementa-
tion we have selected them as:
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• X hyperplanar and Y hyperplanar: uX = nX and uY = nY .
• X hyperplanar and Y non-hyperplanar: uX = nX and uY = 0.
• X non-hyperplanar and Y hyperplanar: uX = 0 and uY = 0.
• X non-hyperplanar and Y non-hyperplanar: uX = 0 and uY = 0.

Remark 9. In several applications the source and the target boundaries are not affine.
Therefore, it is not possible to obtain an affine transformation that exactly maps
X onto Y . In these situations an additional smoothing step is required in order to
improve the quality of the final mesh. Hence, our goal is also to obtain a good initial
inner node location in order to decrease the number of iterations in the smoothing
step. We claim that the minimization of functional H provides better node location
than the minimization of functionals F and G. Moreover, this projection algorithm
may provide an excellent initial guess for morphing procedures [Knu99].

5 Numerical Examples

In order to assess the advantages and drawbacks of the analyzed functionals used
to obtain affine transformations, four examples are presented. These examples are
obtained with a sweeping tool that implements the minimizations of functionals F ,
G, and H. To highlight the analyzed issues, in these examples the inner meshes are
obtained projecting directly from the source surface to the inner layers. That is, we
have neither used a weighted projection algorithm from both cap surfaces (which we
use in practical applications [Roc04]) nor an additional smoothing step to improve
the quality of the final mesh. To solve the overdetermined linear systems that do not
have full rank, we use a singular value decomposition which supplies the solution
with the smallest norm. The set of points X corresponds to the boundary nodes of
the source mesh, and the set of points Y corresponds to the boundary nodes of the
current inner layer. In all the examples, the source surface has a planar boundary,
with non-planar interior. Observe that we have selected source surfaces with planar
boundaries in order to force that the minimization of functional F leads to a set
of normal equations with singular system matrix. Moreover, the minimization of
functional G is only used for source surfaces with planar boundaries. On the contrary,
the target surface may be planar or not. Also, in all the examples, the boundary of
the source surface is not parallel to the loops of the inner layers. Note that if they
were parallel, the minimization of functional G will not produce the skewness effect
presented in Remark 6.

In the first example, see figure 5, a C-shaped geometry with circular cross sections
is presented. The boundary nodes of the source surface, X, and the boundary nodes
of the inner layers, Y , are planar. However, the inner part of the source mesh has
curvature. For the minimization of each functional, two views of nine hexahedra
layers are provided. The left column is a general view, and the right column is a
detail of the fourth, fifth and sixth layers of hexahedra. When we minimize functional
F , by Proposition 1, we know that the overdetermined linear system matrix does
not have full rank. This implies that the obtained inner layers become flat, despite
the source surface has curvature, see figure 5(a). The minimization of G generates
inner layers that present curvature on the inner part. However, due to the shape of
the geometry the skewness effect appears, see Remark 6. Note that as cY −cX tends
to the plane defined by X, the skewness effect is more pronounced, see figure 5(b).
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(a)

(b)

(c)

Fig. 5. Projection of a non-planar source surface mesh with planar boundary onto
planar inner layers. (a) minimizing F; (b) minimizing G; and (c) minimizing H
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In the limit, when the inner layer is on the same plane that the boundary of the
source surface, a degenerated projection is obtained (the minimization of G leads to
a overdetermined linear system with not full-rank matrix, see Proposition 2). Finally,
if we minimize functional H, then the nodes of the inner layers of hexahedra have
the desired location and curvature, see figure 5(c). In this example, we see that the
minimization of H provides the best location for inner nodes.

The goal of the second example, see figure 6, is to show that the minimization
of H gives the best initial inner node location when an additional smoothing step
is required. To this end, a square is swept along a semi-circle. The source surface is
a planar square with curvature in the inner part, whereas the target surface has a
curved boundary. Thus, the inner layers are defined by non-planar loops of nodes
that become more curved near the target surface. Four layers of hexahedra are shown
from two different points of view. The left column is a general view, and the right
column is a detail of the third and the fourth layers of hexahedra. Observe that
the source and the target boundaries are not affine. For this reason, the hexahedral
elements with nodes on the linking sides present an undesired slope, see figure 6.
Therefore, an additional smoothing step will be required, see Remark 9. Like in the
first example, minimizing F we obtain layers of hexahedra with flat inner part, see
figure 6(a). The minimization of G produces non-flat inner layers of hexahedra, but
the skewness effect also appears, see figure 6(b). Finally, minimizing H we obtain an
affine transformation that preserves the curvature of the source surface. Since the
source and the target surfaces are not affine, the computed solution also presents
a slope near the boundary, see figure 6(c). Note that the best initial inner node
location is the one provided by the minimization of functional H.

The goal of the third example, see figure 7(a), is to show that the skewness effect
introduced by the minimization of functional G may also appear for very simple
sweep paths. In particular, this example presents the discretization of an extrusion
volume defined by varying cross-sections along a straight and skewed sweep path.
These cross-sections are elliptical-shaped with different size, and only the middle
of the extrusion path become circular. The source surface is not flat and has a
planar boundary, whereas the target surface is planar. For the minimization of each
functional, a view of four inner layers of hexahedra elements are presented. Figure
7(b) shows that the minimization of F leads to flat inner layer of elements since the
boundary of the source surface is planar. As it is expected, the minimization of G
generates non-planar inner layers of hexahedra. However, the shape of the source
surface is not well preserved, see the skewness effect in the inner layers presented in
figure 7(c). Note that this effect is more pronounced close to the target surface. As
in the previous examples, the minimization of H leads to the desired solution, see
figure 7(d).

The goal of the last example, see figure 8(a), is to show that if the source and the
target surfaces are not affine, the minimization of H provides a better node location
than the one obtained with the minimization of F and G (even in the case of geome-
tries simpler than the volume presented in the second example). In this example we
discretize an extrusion volume defined by varying cross-sections along a straight and
skewed sweep path. The source surface is a planar square with curvature in the inner
part. The target surface is planar and its boundary is defined by four arcs. Hence,
both surfaces have planar boundaries but not mutually affine. Moreover, the inner
layers are defined by planar loops of nodes that become more curved close to the
target surface. Note that source surface boundary is not affine to the inner loops of
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(a)

(b)

(c)

Fig. 6. Projection of a non-planar source surface mesh with planar boundary onto
non-planar inner layers. (a) minimizing F; (b) minimizing G; and (c) minimizing H
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(a) (b)

(c) (d)

Fig. 7. Projection of a non-planar source surface mesh with planar boundary onto
varying shape planar inner layers. (a) Extrusion volume to mesh; (b) minimizing F;
(c) minimizing G; and (d) minimizing H

nodes. Since the source surface is planar, and similar to the previous examples, the
minimization of F generates planar inner layers of hexahedral elements, see figure
8(b). The minimization of G produces skewed layers of elements, see figure 8(c).
Finally, the minimization of H preserves the original shape of the source surface,
and provides the best initial configuration for the smoothing algorithm.
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(a) (b)

(c) (d)

Fig. 8. Projection of a non-planar source surface mesh with planar boundary onto
varying shape planar inner layers. The inner loops are not affine to the source surface
boundary. (a) Extrusion volume to mesh; (b) minimizing F; (c) minimizing G; and
(d) minimizing H

6 Concluding Remarks

In this paper we have presented a comparative analysis of several functionals that
have been extensively used to project meshes in sweeping procedures. We first stated
that the minimization of functional F leads to a set of normal equations with singular
system matrix if the source set of points are hyperplanar. We have also proved that
the minimization of G leads to normal equations with singular system matrix if, in
addition, cY − cX lies in the same hyperplane that X. Moreover, we have seen that
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the minimization of G also introduces a skewness effect when the set of points X is
hyperplanar, and the sets X and Y are not parallel.

Finally, in order to overcome the previous drawbacks we have proposed the
functional H. We have also proved that the minimization of H has one and only one
solution. Thus, sets of normal equations with singular system matrix are avoided.
Furthermore, if uX and uY are properly selected, the minimization of functional H
is preferable since it is not affected by the skewness introduced by the minimization
of functional G, and tends to preserve the shape of the original source surface.
Therefore, it provides suitable node location for the inner layers. In addition, it
supplies an excellent initial guess for the position of the inner nodes if an additional
smoothing step is required.
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